
AlphaXmas: A Final Project for Creative
Programming 2020-2021

Matteo Bernardini (10743181) Yilin Zhu (10702368)

Abstract
This project, AlphaXmas, is a multimedia installation aimed to bring the audience into

an experience of watching a computer generated tree growing, with a computer generated
music melody in the background. The growing plant is generated using a 3D model built
from an L-system and the music melody is generated using a LSTM neural networks. The
generated music melodies are short monophonic Christmas carol compositions obtained from
a LSTM-RNN Model. We train the model using the Hymns and Carols of Christmas dataset
with around 1k historical compositions. The final project is available on https://github.
com/bubblefishstudio/alphaXmas

Keywords: creative programming, plant development, computer graphics, modeling of
plant, animation through simulation, LSTM, music generation, animation and simulation

1 Introduction

Creative Programming provides us with the chance to design and develop a project to discover
something interesting rather than something functional. Our goal is largely inspired by the
beauty of computational creativity, we want to explore how to create a live graphical animation
and live music in this project. Discovering how to generate a tree structure and designing a
computer generated melody, especially in the final stage of completing this project, turns out to
be a difficult but an awarding research path.

In the graphical part, we choose to generate a tree on a 3D canvas. The task we are faced with
is in the field of grammar and formal languages, plant development, and computer graphics. As
for the computer generated music part, the task is in the field of artificial intelligence, especially
LSTM neural networks. Also, for the interaction between human and computer, we choose to
add a few interactive options on the 3D canvas part.

1.1 Plant Development

According to our research, L-systems have been widely used since 1960s as a formalism language
to describe and model a plant. The hidden beauty of nature in botany later stimulated the
interest of computer scientists in formal languages or in the field of computer graphics. More
results came out in simulating the growing process of a plant with more mathematical theory
and the extension of L-systems [7].

In the formalism of L-systems, plants are modelled by a sequence of symbols, obtained by
starting from an axiom and applying some production rules, or rewriting rules. The production
rules in L-systems are used to define how the plant should iterate to form more complex struc-
ture in the next time stage. Branching structures are modelled using bracketed strings, where
the matching pairs of brackets [and] is used to delimit branches. Moreover, the graphical
interpretation of L-systems has also been used since then [2]. After defining the structure of a
plant, a Turtle system interprets the symbol used in the L-system as a command to draw the
branches and leaves of the plant on a graphical canvas or a 3D canvas.

1

https://github.com/bubblefishstudio/alphaXmas
https://github.com/bubblefishstudio/alphaXmas

Figure 1: Distributions in filtered dataset

1.2 Music Generation

Deep learning has become a mature technology because it benefits from the development of
data, hardware and software environment in recent years. They are all becoming pervasive and
supportive. LSTM is a kind of Recurrent Neural Network structure used in the field of deep
learning. Tasks with sequential data are suited to be solved by RNNs, because of the feedback
connections in their design. Researchers have been applying LSTM model in dealing with text,
speech and audio data sets for some years and have already achieved promising results. Applying
LSTM in automatic music generation has also been proved to possible in the past years [8][4].

2 Music Part

We employ artificial intelligence in order to obtain non-trivial computer generated music. In
this field, the usual process consist in designing a suitable model for the task, collecting and
processing an appropriate dataset for the training of the model and finally evaluating the trained
model over relevant parameters.

The task we are faced with is the generation on a monophonic melody. Recurrent Neural
Networks provide the basis for this kind of task, since they are suited to generate sequences of
correlated information. In particular, Long Short-Term Memory architectures are suited to the
generation of music melodies, since they are better fitted at capturing long-term dependencies,
like musical context, because they don’t suffer from the gradient vanishing problem.

2.1 Data Set

Since our goal is to generate Christmas melodies, we found the dataset ABC Christmas Carols
and Hymns1, which contains around 1.6k historical compositions in ABC notation suitable for
Christmas mood.

We performed some further processing on the dataset in order to simplify the training and get
more accurate results. In particular, we filtered music pieces that are not in 4/4, we transposed
everything to C major, removed chords, extracted individual voices, removed melodies which
were too low or too high in octave (since they would have different musical contour, e.g. an
accompanying bass line) and removed melodies that are too short or too long. After this process,
we obtained a dataset of slightly less than 1k samples, with distributions in fig. 1.

1http://www.stephenmerrony.co.uk/ABC/Carols/

2

http://www.stephenmerrony.co.uk/ABC/Carols/

input_pitch

InputLayer (None, None)

Embedding (None, None, 512)

input_duration

InputLayer (None, None)

Embedding (None, None, 512)

output_pitch

Dense (None, None, 35)

output_duration

Dense (None, None, 30)

Concatenate (None, None, 1024)

LSTM (None, None, 1024)

Figure 2: RNN model for music melody generation

Figure 3: RNN training measures

2.2 RNN Modelling

For our task, the chosen domain is the one of melodies defined as sequences of tuples 〈p, d〉,
where p is the pitch expressed as midi note (with -1 indicating a rest) and d is the duration
expressed as quarter note ratio. In order to capture pitch and duration information separately,
yet contextually, we decided to design a 2-input 2-output model, as depicted in fig. 2.

In particular, two input layers are used for pitch and durations, followed by two embedding
layers. The embedding layers are concatenated and fed to the LSTM layer, which has a sigmoid
activation function to model non-linearities. Finally, two Dense layers are used to sample the
two categorical distributions of pitches and durations.

2.3 Training and Results

The model is trained to predict the same melodies which are fed as input. This is done by
generating a validation dataset as the shifted version of the training dataset (i.e. anticipated
by a single time-step). For each iteration, the sparse categorical cross-entropy is used as loss
function, since the output is obtained as the sampling of two correlated categorical distributions.

Loss optimization is performed using the Adam algorithm, which computes the gradients
needed to adjust the weights of the network in order to obtain the minimum loss. As shown in
fig. 3, we obtained an optimal model after around 95 iterations.

3

F make a stroke by moving forward
f move forward

^ & pitch up/down
/ \ roll clockwise/anticlockwise
+ - yaw right/left
| turn around (i.e. yaw 180°)

[] save/reset turtle state to/from stack

Table 1: Standard turtle interpretation. Parameters indicate the length of motions or the angle
of rotations

3 Graphical Part

While the melody is being played, the audience can observe the growth of a Christmas tree.
We choose to model an approximation of Picea abies2 by exploiting an L-system to model its
growth. A turtle interpretation is used to convert the sentences into a set vertices of a 3D space,
which are finally rendered in a canvas using a suitable 3D engine.

3.1 Parametric L-system

For our project we use a parametric L-system, which is a type of generative grammar [1] charac-
terized by recursive production rules, leading to an infinite rewriting sequence, and a parameter
associated to each symbol of the alphabet. Formally:

L = 〈G,ω, P 〉 (1)

where G is the alphabet, ω is the axiom sentence and P is the set of production rules. Each
symbol of the alphabet is in the form An where n is the parameter. Production rules are therefore
functions of n, for example:

An −→ BnCn−1 (2)

The L-system defined in fig. 4 is used to repeatedly generate sentences representing turtle
movements to obtain each growing step of the tree.

3.2 Turtle Interpretation

A turtle interpretation is needed to convert each rewriting step of the L-system (fig. 4) into a
set of vertices in a 3D space. A turtle state is identified by the turtle current position and its
current orientation in space, given by three versors indicating the head, the right side and the
ground directions in respect to the turtle (see fig. 5).

Each symbol of a rewriting step (sentence) of the L-system is then interpreted as a movement
or rotation of the turtle, according to a variation of the standard interpretation in table 1. In
particular the following symbols are added or modified according to our specific case:

F(n): draws a branch stroke of length n

L(n): draws a leaf stroke of length n

O(p): adds a light to the current turtle position with a probability p

*: places the star at the current turtle position
2https://en.wikipedia.org/wiki/Picea_abies

4

https://en.wikipedia.org/wiki/Picea_abies

ω:
!(2) H T X *

P:
-- trunk --
H → F(0.4) ! H ?
T → /(30 + r*10) ! D(3.2) B B B T
B → /(120 + r*20) [| ^(50 + r*10) D(2.5) ! Y ?] D(2 + r*0.5)

-- branches --
Y → X I ! V ?
I → +(r*4 - 2) X !(0.6) I ?(0.6)
V → D(0.2) [/(20) +(50) X ! I I ?]

D(0.1) [\(20) -(50) X ! I I ?]
!(0.8) Y ?(0.8)

-- leafs --
X → ^(r*3) E E E E E E D(0.05) O(0.3)
E → /(60) [&(70) L(0.5)] F(0.05)

-- delay stroke --
D(n) → if n > 1 then D(n-1) else F(n)

Figure 4: L-system used to generate the tree animation. r is a random value in the range [0, 1),
used to add angle and length variability to each growing branch

Figure 5: Turtle in space with head, side and ground versors

5

Any other symbol of the sentence that is not in the table is simply ignored and does not update
the turtle state.

Pitch, roll and yaw are rotations about the side, head and ground axes respectively, and their
parameter is expressed in degrees. Stroke/movements parameters are expressed as the ratio of
a predefined unit distance, which is computed based on the canvas size.

Square brackets are used to create a stack of saved turtle states. This approach simplifies
the creation of branches, by allowing to save a turtle state, draw a branch and then reset the
turtle to the previous position and orientation.

3.3 3D Model Computation

Given a 3D Cartesian frame of reference, the turtle has its initial position at the origin and its
original orientation is given by the head, side and ground versors being aligned respectively with
the z-axis, x-axis and y-axis. In practice, a turtle state Tn can be univocally identified by a
position vector and a quaternion indicating the orientation:

Tn = 〈 ~Pn, qn〉 (3)
~P0 = (0, 0, 0) (4)
q0 = 1 + 0i+ 0j + 0k (5)

We chose to use quaternions since they are mathematically simple and stable (i.e. they
are easy to re-normalize and they don’t suffer from the gimbal lock problem) [3]. Orientation
updates can be then simply performed in terms of quaternion pre-multiplication, and the three
orientation versors can be obtained by rotating accordingly the reference frame axes to the
current orientation.

Finally, turtle positions are collected at each stroke symbol to create the sets of branch
vertices and leaf vertices needed to render the shape in the canvas.

3.3.1 Quaternions

Given the function Pure(z) = (=i(z),=j(z),=k(z)) which extracts the vector component of a
quaternion z, and using the notation z∗ to indicate the complex conjugate of z, the orientation
turtle axes can be obtained as follows:

Ĥn = Pure(qn · k · q∗n) (6)

Ŝn = Pure(qn · i · q∗n) (7)

Ĝn = Pure(qn · j · q∗n) (8)

Position updates caused by turtle movements F(d), L(d), f(d) can be therefore obtained as
follows:

~Pn+1 = ~Pn + dĤn (9)

while orientation updates caused by turtle rotations of parameter α about the axis û, with ρ
representing the radians-equivalent of α, can be obtained as follows:

qn+1 = r · qn r = cos
(ρ
2

)
+ sin

(ρ
2

)
(i, j, k) · û (10)

6

Figure 6: Rendered tree with lights and star

3.3.2 Final shape

The 3D model of the tree is defined by a set of pairs of vertices identifying the segments com-
posing the tree trunk and branches Vb and a set of pairs of vertices identifying the segments
composing the leaves Vl. Additionally, a set of vertices for lights positions Vx and a single
vertex for the position of the star Vs are needed to add decorations. The final tree shape is
thus obtained by rendering the segments of each of the two sets Vb and Vl in different colors
and different stroke weight (thicker brown for the branches, thinner green for the leafs), and by
rendering colored dots for every vertex in Vx and by rendering a star in position Vs according to
the interaction rules (see section 4).

In particular for each F(d) or L(d) symbol moving the turtle from state Tn to state Tn+1,
the segment 〈 ~Pn, ~Pn+1〉 is added to Vb or Vl respectively. In reality, a simplification step is also
performed in order to merge consecutive segments thus reducing the number of needed vertices.

4 User Interaction

In order to capture the interest of the audience, the canvas is animated using a virtual camera
system. In particular, the nose of the viewer is tracked using the webcam of the device and
its position is used to update the 〈x, z〉 coordinates of the camera (which is kept at a constant
distance y from the center of the frame of reference). This interaction allows the user to view the
tree from different angles and provides a 3D illusion of the tree. The view is also continuously
and slowly rotated about the z-axis in order to show every branch of the growing tree.

Additionally, the tree is decorated with lights of four different colors. Every light alternates
among the four colors every time a note is being played, effectively linking the animation to the
melody playback. This effect simulates the usual decorations added to Christmas trees.

Finally, after the tree stops growing, a star might appear on top of the tree depending on
whether the generated melody is "good enough". The used criterion to determine if a melody is
"good" is whether the melodic sequence contains a cadence in the form II-V-I, VII-I or II-I. If
present, the star will appear on top of the tree at the same time the cadence is played. This last
interaction makes every experience unique, since both the tree and the melody are generated
randomly every time the application is loaded. An example of rendered tree with lights and star
is depicted in fig. 6.

7

5 System Design and Implementation

The project is implemented as a single-page Web Application, built using webpack. At page
load, a loading animation is displayed and when the melody and tree model are loaded, a start
button is displayed to let the user start the growing animation and music playback. Autoplay
is avoided because of autoplay-blocking policies commonly found in modern browsers3.

The music is generated from a previously trained Keras model which is loaded via JavaScript
on page load. The Keras model was prepared using a Jupyter Notebook4, using music21
for dataset analysis and processing. Playback is achieved using music21j by converting each
〈note, duration〉 tuple to actual MIDI notes, which are rendered using a Music Box Soundfont5.

The graphical rendering is performed on a HTML <canvas> using p5.js. In order to op-
timize performance, every growing step of the tree is pre-computed during the loading stage,
by running the L-system rewriting and turtle interpretation. In particular, classes Grammar,
Turtle, Quaternion, Star and Tree have been implemented: for every growing step, suitable
p5.Geometry objects (for tree branches and tree leaves) and arrays of vertices (for light points
and star position) are computed. At every draw cycle the needed objects are then referenced
using the model and point primitives of p5.js This approach has the advantage of leveraging
the GPU for the actual rendering, but it’s not documented6.

Finally, face detection is performed using Keras PoseNet library, by accessing to the video
stream of the front camera using createCapture primitive of p5.js. An Observer class is im-
plemented to keep track of the position of the nose, which is used to update the position of the
camera at every draw cycle.

6 Future developments

Right now, the animation of growing tree is not smooth because the model is discrete in time
states. We know other researchers have discovered how to make a smooth animation of plant
development in continuous time states using a differential mathematical model like differential
L-systems [6] or timed L-system [5]. In those advanced model, they overcome the limits of simple
L-system and can capture continuous growing process on a single branch or internodes to make
time-lapse style animation.

Also, limited by the equipment and the time we have for this project, not all the inter-
esting design we have thought about at the beginning of the Hackathon day turned out to be
implemented. In the future, this project has the potential to be extended to a Virtual Reality
application. With more help of physical sensors on the location and movement of the audience,
the graphical perspective of the project can be improved to provide a better emerging experi-
ence: the audience’s view of the tree will be more realistic with the camera moving together
with the perspective from the audience.

As for the generated music, the model can be improved by doing further processing on the
dataset. The playback can be extended to 3D audio, by taking advantage of the distance and
location between the audience and the tree.

3https://developer.mozilla.org/en-US/docs/Web/Media/Autoplay_guide
4https://github.com/bubblefishstudio/alphaXmas/blob/main/colab/RNN_Model_Test.ipynb
5https://github.com/gleitz/midi-js-soundfonts/tree/gh-pages/MusyngKite/music_box-mp3
6https://github.com/processing/p5.js/issues/5393

8

https://developer.mozilla.org/en-US/docs/Web/Media/Autoplay_guide
https://github.com/bubblefishstudio/alphaXmas/blob/main/colab/RNN_Model_Test.ipynb
https://github.com/gleitz/midi-js-soundfonts/tree/gh-pages/MusyngKite/music_box-mp3
https://github.com/processing/p5.js/issues/5393

Figure 7: Growing steps of the tree

7 Conclusions

In this project, we created a tree animation in a parametric, bracketed extension of L-system
model. At the same time, a Christmas style music melody is generated in real-time from an
LSTM neural network model and played back using a music box sound. The final result of
the tree animation is depicted in fig. 7, by showing some snapshoots of the growing stage in a
discrete time.

As for the listening impression for the generated music, the result is generally considered
to be suitable for Christmas. In general, the project provides a peaceful and happy impression
from the audience’s opinion.

Future works can be included both from the graphical part and the music part. The rendering
of the tree can be improved by adding more texture and environmental lights. The LSTM model
for generating music can also be improved. We finally hope to improve this project in order to
be used in a Christmas exhibition or some other event.

9

References

[1] Noam Chomsky. “Three models for the description of language”. In: IRE Transactions on
information theory 2.3 (1956), pp. 113–124.

[2] James Hanan. Parametric L-systems and their application to the modelling and visualization
of plants. Citeseer, 1992.

[3] Yan-Bin Jia. “Quaternions and rotations”. In: Com S 477.577 (2008), p. 15.

[4] Qi Lyu et al. “Modelling high-dimensional sequences with lstm-rtrbm: Application to poly-
phonic music generation”. In: Twenty-Fourth International Joint Conference on Artificial
Intelligence. 2015.

[5] Jon McCormack et al. “Interactive evolution of L-system grammars for computer graphics
modelling”. In: Complex Systems: from biology to computation (1993), pp. 118–130.

[6] Przemyslaw Prusinkiewicz, Mark S Hammel, and Eric Mjolsness. “Animation of plant devel-
opment”. In: Proceedings of the 20th annual conference on Computer graphics and interactive
techniques. 1993, pp. 351–360.

[7] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of plants.
Springer Science & Business Media, 2012.

[8] Falak Shah, Twisha Naik, and Nisarg Vyas. “LSTM based music generation”. In: 2019
International Conference on Machine Learning and Data Engineering (iCMLDE). IEEE.
2019, pp. 48–53.

[9] Massimiliano Zanoni. Creative Programming and Computing: Course material of MSc in
Music and Acousting Engineering. 2020.

10

	Introduction
	Plant Development
	Music Generation

	Music Part
	Data Set
	RNN Modelling
	Training and Results

	Graphical Part
	Parametric L-system
	Turtle Interpretation
	3D Model Computation
	Quaternions
	Final shape

	User Interaction
	System Design and Implementation
	Future developments
	Conclusions

